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Abstract

This paper considers a market with two exchange mechanism and agents who

may or may not benefit from exchange. Agents arrive with an observable likelihood

that they would benefit from exchange. Based on the observed value, a social

planner decides to admit or reject the agent from entering the market. If admitted,

the agent stochastically participates in one of two mechanisms: either they provide

their own object to exchange, or they are allocated one from a limited supply.

The planner aims to maximize the number of agents that benefit from exchange

by establishing a minimum certainty threshold for participation. Agents do not

know their type and cannot act strategically. The motivating example for this

paper is kidney transplantation. Our results suggest that eligibility requirements

for participating in both kidney exchange programs and the deceased donor list

should be lowered. Adopting the papers suggestions would result in an additional

3,100 beneficial transplantations per year.

1 Introduction

1.1 Background

Each year, approximately 140,000 Americans are diagnosed with end stage renal disease

(ESKD). ESKD is characterized by the near-complete loss of function of the kidneys.

Patients with ESKD must either undergo dialysis or receive a kidney transplantation

to survive. Compared to dialysis, transplantation is associated with a higher quality of

life and reduced mortality. However, not all patients are suitable to receive kidney. For

many patients, the risks associated with the kidney transplantation surgery outweigh

1
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the expected benefit. Of the 140,000 new ESKD diagnosis per year, less than one third

of patients are ever enrolled on the kidney transplant waitlist. For many patients, the

decision on whether to enroll them is clear. For others, there is uncertainty on whether

they should be waitlisted. This paper considers the perspective of a public health official

who is setting a ‘certainty threshold’ policy with the goal to maximize the number of

beneficial transplantations. The certainty threshold is the minimum certainty that a

patient would benefit from a transplant necessary to enter the waitlist. If the threshold

is too high then matches will never be made, and donated kidneys will fail to find a

match. If the threshold is set too low, then there is a risk that patients who are not

expected to benefit will receive kidneys instead of those who are expected to benefit. To

find the optimal threshold, we first provide background on the state of kidney disease

and transplantation in the United States. Next, we introduce a model of the current

US transplantation market, split between living donors and deceased donors. Using the

introduced model, we estimate the optimal certainty threshold that should be adopted

to maximize the number of successful transplantations. Finally, we compare these results

to the status quo to calculate the overall impact on welfare.

Patients who receive transplantations have significantly better health outcomes than

patients who remain on dialysis. Dialysis patients faced an all-cause mortality rate of

0.188 per person year, compared to 0.074 for transplant patients (USRDS 2023).1 Health-

care costs were also significantly lower, at an average of $43,913 per person per year for

transplant recipients, as opposed to $99,325 in 2021 for Medicare beneficiaries (USRDS

2023). However, the supply of donor kidneys limits the impact of transplantation. As

of January 2025, there are over 90,000 patients enrolled on the kidney transplantation

waitlist. On average, 17,177 patients received transplants per year2, while 40,823 were

added to the waitlist. The median waiting time is estimated at 4.05 years as of 2021

(Stewart, Mupfudze, and Klassen 2023), and an estimated 17 people die each day while

awaiting a kidney transplant (Health Resources and Services Administration 2024).

Despite the positive outcomes associated with transplantation, less than a third of

1Due to selection bias, direct comparisons are of limited usefulness. Healthier and younger patients

are more likely to be selected to waitlisted. However, trends hold when comparing patients who are

waitlisted and receive a transplant, against those who are waitlisted and do not receive a transplant
2These statistics are found in the (OPTN 2024) database. Unless specified, data corresponds to the

average from 2017 through 2021
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patients are ever placed on the waitlist.3 There are a variety of factors that contribute to

this waitlist enrollment rate. First, some eligible patients choose not to enroll. Second,

profit incentives may change the likelihood of nephrologists and/or dialysis providers

recommend transplantation (Gander et al. 2020). Third and most prevalent, medical

ineligibility makes many patients unlikely to benefit from transplantation. Kidney trans-

plantation is stressful to the body and often requires the extended use of immunosup-

pressants. For elderly patients, or patients with serious comorbidities, the acute risks

associated with transplantation may outweigh the long-term benefits. Additionally, a

patient may be ineligible because of compliance or psychological concerns. The criteria

used to evaluate eligibility are not firmly delineated and significant variation exists be-

tween practices (Batabyal et al. 2012). An elderly patient with an aggressive cancer may

have a clearly negative expected outcome and an otherwise healthy young adult may

have a clearly positive expected outcome. Between the extremes, however, there exists

a grey area of uncertainty when evaluating the expected outcome of a transplant. This

paper seeks to provide guidance on where to draw the line to maximize transplants with

a positive outcome.

The majority of donor kidneys are sourced from deceased donors (USRDS 2023). To

receive a donor kidney, patients must first register on the deceased donor list (DDL).

Based on attributes such as age and blood type, patients are assigned a point value

representing their priority (OPTN 2025). When an organ is harvested for donation, the

highest priority patient on the list is contacted. A patient can either accept or reject

an offered organ.4 If rejected, the organ is offered to the patient with the next highest

priority on the DDL. Harvested organs degrade with time and are eventually discarded

if there is no match (Reese et al. 2021). Despite the high demand, 24% of harvested

kidneys went unused in 2021 USRDS 2023. In total, an average of 17,171 kidneys were

transplanted from deceased donors into patients undergoing dialysis per year between

2017 and 2021 OPTN 2024.

Living donors accounted for 26% of all donations between 2017 and 2021 OPTN 2024.

Most people have two kidneys but only require one. In living donor donation, one kidney

3This is calculated as the number of new ESKD transplant candidates per year, divided by the number

of new ESKD patients. (OPTN 2024)
4Donor organs are evaluated on compatibility, function, characteristics of the donor, and the expec-

tation of future offers, among other considerations.
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from the donor is transplanted into the recipient. The donor is typically a family member

or friend of the recipient. However, in the case that the donor is incompatible with

their preferred donor, the donor/patient pair can enter a kidney exchange market (KE).

There are multiple kidney exchange programs within the United States that range in size,

hospital participation, and matching methodology (Ashlagi and A. Roth 2021). In most

kidney exchange markets, participants must be registered to the DDL before participating

in kidney exchange, and are thus subject to the same restrictions and screening (OPTN

2025).

To motivate the paper, we consider two real-world scenarios. First, consider the case

of a dialysis provider that signs a value based care contract with a health insurance

company. In the contact, the dialysis provider is paid a bonus for enrolling more patients

on the kidney transplantation waitlist.5 Will this financial incentive improve welfare by

enrolling patients who would benefit from transplantation but would otherwise not be

enrolled? Or will it hurt welfare by overpopulating the waitlist with patients who are

unlikely to benefit? The next scenario is of a husband with kidney failure and a wife

who is a willing donor. In this scenario, the wife is not a match for her husband and a

behavioral concern (such as alcoholism or medical non-compliance) prevents the husband

from enrolling in the DDL and thus KE. How would the participation of the couple in

the KE impact welfare?

We present two primary findings. First, in the KE market, no patient/donor pair

should be restricted from entering (i.e. the threshold should be set to zero). In the

DDL, the threshold should be lower than the status quo (although above zero). We find

that lowering the status quo threshold to the optimal would lead to an additional 3,100

beneficial transplantations per year.

1.2 Literature Review

Kidney exchange is well-studied within the economic literature. The majority of re-

cent papers modify a standard model of dynamic exchange. In the standard model,

patient/donor pairs enter the market at a Poisson rate. The market is modeled as an

Erdős–Rényi random graph with nodes that representing a single patient/donor pair, and

5While I cannot find a public source for this, I can personally verify this is true for at least one major

dialysis provider.
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directed edges representing compatibility between the the donor of one pair and the pa-

tient of another. Matching algorithms search this graph for cycles of two, cycles of three,

or chains of multiple patients headed by an altruistic donor. Once a match is found, all

donor/patient pairs are removed from the market. Welfare is defined as the average wait-

ing period. Building from this model, researchers have considered the efficacy of different

matching algorithms ((A. E. Roth, Sonmez, and Unver 2004), (Ünver 2010), (Ashlagi,

Nikzad, and Strack 2023), among others); the importance of market thickness (Ashlagi,

Nikzad, and Strack 2023); loss models where nodes leave the graph without matching at

a Poisson rate (Akbarpour, Li, and Gharan 2020); the makeup of the market between

of easy- and hard-to-match pairs (Ashlagi, Burq, et al. 2019); and operational aspects

of kidney exchange, such as declined transplants (Dickerson, Procaccia, and Sandholm

2019); among others.

This paper builds directly from the KE modeling results found in (Akbarpour, Combe,

et al. 2024), (Akbarpour, Li, and Gharan 2020), and (Ashlagi, Nikzad, and Strack 2023).

Our paper is focused on interaction between the KE and DDL markets, not the structure

of the KE market itself. Because of this, the model is designed to be compatible with

all algorithms and extensions common in the KE literature. To use results from the

literature, we first need to introduce a few common assumptions. The first assumption

is that every donor/patient pair is equally likely to be compatible with another pair.6

Second, the matching algorithm is myopic. A myopic algorithm is a common assumption

in literature, such as in (Akbarpour, Combe, et al. 2024) and (Ashlagi, Nikzad, and Strack

2023). Third, we assume that past a given threshold, increasing the rate of entry in KE

has near-zero impact on expected wait times. This is shown in (Akbarpour, Combe, et al.

2024). Fourth, we implicitly model loss. To support the continued relevancy of literature

results under this formulation, we reference (Akbarpour, Li, and Gharan 2020). Fifth, we

expect the KE market to reach a steady state. That is, as time runs to infinity, the pool

size and exit rates will stabilize around an expected value. Ultimately, the results we

yield are robust under all state-of-the-are matching algorithms and any market makeup.

This paper departs from literature by integrating the DDL and endogenously defining

the market entry rate through the certainty threshold. Most papers focus exclusively

6In-fact, we only need that a patient’s expectation of benefiting from exchange is independent of their

compatibility with others.
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on the kidney exchange market. In (Ashlagi and A. Roth 2021), authors Itai Ashlagi

and Alvin Roth call attention to integrating the DDL into the KE as a promising area

of future study. One example of this integration effort is found in (Akbarpour, Combe,

et al. 2024), in which the authors consider drawing from the DDL to start chains in the

absence of altruistic donors. Given current legal and regulatory hurdles, this integration

is not immediately actionable. Our model seeks to reflect the current US market when

considering the interaction between the DDL and KE. Additionally, all models that we

are aware of consider entry rate exogenous. In contrast, entry rate is defined endogenously

as a function of the chosen threshold.

2 Model

2.1 Setup

Agents enter the a population pool with a Poisson arrival rate given by n. Each agent has

an unobservable true type, xi ∈ {0, 1}, which corresponds to their payoff from matching.

Each agent also has an observable likelihood that they would benefit from matching,

given by ξi = Pr[xi = 1] ∈ [0, 1]. In our context, ’benefit from matching’ is defined as

the outcome of transplantation is preferable to continued treatment on dialysis. Agents

are otherwise identical. Let ξi be drawn from a distribution given by g(ξ), where g(ξ) is

a positive-valued, continuous, and well-behaved probability density function.

Let δ ∈ [0, 1] represent the threshold established by the social planner. If ξi ≥ δ, then

the agent is permitted to enter a market. After being accepted by the social planner,

the agent then joins one of two markets. With probability γ ∈ [0, 1], the agent enters

the kidney exchange market, denoted KE. With probability (1 − γ), the agent instead

enters the deceased donor market, denoted DDL. Note that KE refers to all live-donor

transplantations, not just donations that occur through the kidney exchange.7 Also note

that patients can enter either the DDL or the KE, but not both.8

Moving forward, we will be evaluating the model once it reaches steady state. The

7This simplification is justified by the fact that we are assuming KE entry rate is already high enough

to not impact average wait time, and patients who receive a live donation do not use a kidney from the

DDL.
8In the real world, enrolling in the DDL is often a prerequisite for joining a KE program. However,

we assume patients with access to a live donor do not use the DDL.
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model will stabilize around certain entry rate, market size, and exit rate.9 Values reflect

the long-run expected value, although specific instances will vary.

By construction, each market has a Poisson arrival rate, λ, given by

λKE = nγ

∫ 1

δ

g(ξ) dξ

λDDL = n(1− γ)

∫ 1

δ

g(ξ) dξ

for KE and DDL respectively. Additionally, each market has a matching rate, given by the

positive valued, monotonically increasing functions hKE(λKE) and hDDL(λDDL). Define

h = hKE + hDDL The function h captures the expected number of agents matched per

period. The forms of hKE and hDDL are presented in Assumptions 2 and 3 respectively.

We define a new function that gives the precision of the social planner, p(δ). In other

words, p(δ) captures the expected value of matching a permitted agent. This function is

given by,

p(δ) =

∫ 1

δ
g(ξ)ξdξ∫ 1

δ
g(ξ)dξ

,

which is simply the expected value of g(ξ), truncated to match the threshold.

Finally, we introduce a measure of welfare, w(δ). We define welfare as the rate that

patients that benefit from matching (xi = 1) that are matched in steady state. This is

given by

w(δ) = p(δ)(hKE(λKE) + hDDL(λDDL)) (Total welfare)

In most kidney exchange papers, such as (Ashlagi, Burq, et al. 2019), (Akbarpour,

Combe, et al. 2024), and (Ünver 2010)10, welfare measures the average waiting time

of agents after entering the KE. In these models, patients remain in the waiting pool

until matched. Once matching has reached steady state, departure rate is equivalent to

arrival rate. Little’s Law11 tells us that waiting time and arrival rate are directly linked,

and therefore minimizing average wait time is equivalent to maximizing departure rate.

One notable exception is found in (Akbarpour, Li, and Gharan 2020). In the model

they present, agents are allowed to depart without being matched, known as loss. This

corresponds to the patient dying or becoming too sick to receive a transplant. The authors

9A full treatment of steady state, and proof that it will be reached in a loss model is given in (Ashlagi,

Burq, et al. 2019)
10Ünver minimizes time-discounted wait time
11The average number of items in a system is equal to the arrival rate multiplied by wait time
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tweak the welfare function to minimize loss rate instead of waiting time. In our model,

loss rate is implicitly defined as (n − w(δ)). This is the number of patients who do not

receive a beneficial match per period in steady state. Therefore, our objective function

aligns with the KE literature and accurately models the situation.

2.2 General Analysis

We now turn to understanding the relation between the threshold and expected matches.

We begin by finding the threshold maximizing function for a single market.12 Let wS

denote single market welfare. To find the FOC, we must solve:

wS(δ) = p(δ)h(λ)

dwS

dδ
=

dp

dδ
· h(λ) + p(δ) · dh

dλ
· dλ
dδ

= 0

dp

dδ
· h(λ)︸ ︷︷ ︸

Benefit from increased precision

= −p(δ) · dh
dλ

· dλ
dδ︸ ︷︷ ︸

Detriment from reduced market size

(1)

It is beneficial to develop intuition for Eq. (1) before progressing. We know that

p′(δ) is nonnegative, as a more selective social planner is more precise. Similarly, h(λ)

is nonnegative by construction. The LHS is therefore a nonnegative value that captures

how welfare improves from increased precision. On the RHS, h′(λ) is nonnegative by

construction, as higher agent entrance rate corresponds to a higher rate of matching.

In contrast, λ′(δ) is negative, as increasing the threshold reduces the number of agents

that are enter the market. Therefore, the RHS captures the reduction in welfare from a

reduced matching population. Putting it together, Eq. (1) is telling us that optimality is

achieved when the gains from increased precision is equivalent to the losses from reduced

market size.

Using Leibniz’s rule, we can calculate dp
dδ
:

p(δ) =

∫ 1

δ
g(ξ)ξdξ∫ 1

δ
g(ξ)dξ

dp

dδ
=

g(δ)(
∫ 1

δ
g(ξ)ξdξ − δ

∫ 1

δ
g(ξ)dξ)

(
∫ 1

δ
g(ξ)dξ)2

(2)

12In this subsection, we drop the subscript for λ and h as the analysis is the same between markets.

Note we use γ, although the analysis is the same for the DDL if γ is replaced by (1− γ).
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Next we calculate dλ
dδ
:

λ(δ) = nγ

∫ 1

δ

g(ξ) dξ

dλ

dδ
= −nγg(δ) (3)

Plugging (2) and (3) into (1), we the following FOC:

dwS

dδ
=

g(δ)(
∫ 1

δ
g(ξ)ξdξ · (h(λ)− h′(λ)nγ

∫ 1

δ
g(ξ)dξ)− h(λ)δ

∫ 1

δ
g(ξ)dξ

(
∫ 1

δ
g(ξ)dξ)2

= 0 (4)

Eq. 4 gives the optimality condition for a single market. The equation clearly depends

on assumptions we make about the function h and distribution g. We introduce those

assumptions in the following section.

2.3 Specific Threshold Analysis

To specify the model to kidney exchange, we introduce the following three assumptions:

Assumption 1: g(ξ) is uniformly distributed. This simplifies the math, and is relaxed

in the Extensions section.

Assumption 2: hDDL(λDDL) = c(1− e−kλDDL) for some c ∈ R+, k ∈ R. The variable c

corresponds to the number of deceased donor kidneys harvested and k

captures the efficiency of utilizing harvested kidneys. This functional

form was chosen to match a set of empirical observations about the

deceased donor list. First, hDDL(0) = 0. Second, limλ→∞ h = c, as

the maximum number of kidneys distributed is capped by the number

harvested. Third, h is monotonically increasing with the waitlist entry

rate. A higher entry rate corresponds to a longer waitlist, a longer wait-

list increases the number of patients a harvested kidney can be offered

to before it degrades, and an increased number of offerings improves

the likelihood that any patient accepts the harvested kidney.

Assumption 3: hKE(λKE) = αλKE for some α ∈ (0, 1). This assumption follows from

both theoretical and empirical analysis. The observed probability of

benefiting from exchange does not change the likelihood that an agent’s

good is compatible with any agent. Therefore, each agent has an equal
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likelihood of contributing to a 2-cycle, 3-cycle, or chain, regardless of

ξi. The entrance of an new agent corresponds to a expected number of

matches, α > 0, in steady state.13 The value (1−α) corresponds to the

portion of patients that die or are removed from the kidney exchange

program while waiting on a match. Realistically, α is increasing with

entry rate. We are assuming the entry rate is high enough to make this

effect negligible.14

Using Assumption 3, we can derive the first major result of the paper. Note that

Proposition 1 does not depend on Assumptions 1 and 2.

Proposition 1 For any well-behaved, positive valued probability distribution, g(ξ), and

myopic matching algorithm, wKE(δ) reaches a maximum at δ = 0 and wKE is weakly

monotonically decreasing in δ once the system reaches steady state.

Proof 1 Under a myopic matching algorithm, new matches are considered immediately

after the entrance of each new agent. Therefore, we can define the following equation to

represent the successful matches made per period:

wKE(δ) = α︸︷︷︸
Matches per entrant

· nγ

∫ 1

δ

g(ξ) dξ︸ ︷︷ ︸
Entrant frequency, λ

·
∫ 1

δ
g(ξ)ξdξ∫ 1

δ
g(ξ)dξ︸ ︷︷ ︸

Portion of matches benefit agents, p(δ)

Then we can derive FOC as follows:

max
δ

w(δ)KE = αnγ ·
�

���
��

∫ 1

δ

g(ξ) dξ ·
∫ 1

δ
g(ξ)ξdξ

�����∫ 1

δ
g(ξ)dξ

= αnγ ·
∫ 1

δ

g(ξ)ξdξ

dwKE

dδ
= −αnγδ∗g(δ) = 0

Because g(δ) and all parameters are positive valued, this yields

δ∗ = 0

Also, note that dwKE

dδ
< 0, so welfare is decreasing in δ.

13In lossless KE models, α = 1. In loss models (see (Akbarpour, Li, and Gharan 2020)), expected

matches per entrant stabilizes to some α ∈ (0, 1). Also note that this claim is robust under models that

consider hard-to-match agents, as an agent’s ξi is independent of their difficulty of matching.
14See Section 1.2 for more details.
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The intuition behind this result is simple. When a new agent joins the market, they

always bring an additional good. When a match is made, their good is transferred to

another agent resulting in an expected payoff of their own (ξi) and the other agent (ξj).

Therefore, even if they have a low likelihood of benefiting, they facilitate a match that

would otherwise not happen.

The implications of Proposition 1 sharply contradict current kidney exchange policies.

The full implications are explored in Section 3.

We now use Assumptions 1-3 to arrive at the optimal threshold level. First, we find

precision and its derivative under the uniformity assumption:

p(δ) =

∫ 1

δ
g(ξ)ξdξ∫ 1

δ
g(ξ)dξ

=
1 + δ

2
(5)

dp

dδ
=

1

2
(6)

Next, we calculate the optimal DDL threshold. Find the input rate as follows:

λDDL(δ) = n(1− γ)

∫ 1

δ

g(ξ)dξ = n(1− γ)(1− δ) (7)

dλDDL

dδ
= −n(1− γ) (8)

And the processing function:

hDDL = c(1− e−kλDDL) (9)

= c(1− e−kn(1−γ)(1−δ))

dhDDL

dδ
= ckn(1− γ)e−kn(1−γ)(1−δ) (10)

Finally, we combine Eq. (5), (6), (9) and (10) under the FOC given by Eq. (1) to find

δ∗DDL, the optimal threshold for the DDL market:

dwDDL

dδ
=

1

2
c
(
1− e−kn(1−γ)(1−δ∗DDL)

)
− 1

2
(1− δ∗DDL)ckn(1− γ)e−kn(1−γ)(1−δ∗DDL) = 0

(11)

e−kn(1−γ)(1−δ∗DDL) =
1

(1− δ∗DDL)kn(1− γ) + 1

δ∗DDL = 1− ln (1 + (1 + δ∗DDL)kn(1− γ))

kn(1− γ)
(12)

Eq. (12) can be solve computationally.
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From Proposition 1, we know that the optimal KE threshold, δ∗KE, equals 0. For the

sake of completeness, we show that Assumptions 1-3 align with this result:

hKE(λ) = αλ

= αnγ

∫ 1

δ

g(ξ)dξ

= αnγ(1− δ) (13)

dhKE

d
= −αnγ (14)

Calculate δ∗KE by plugging Eq. (5), (6), (13), and (14) into Eq. (1):

dwKE

dδ
=

1

2
αnγ(1− δ)− 1

2
αnγ(1 + δ) = 0 (15)

1− δ = 1 + δ

δ∗KE = 0 (16)

Per the Total Welfare equation, we simply add wKE and wDDL to find total welfare.

This result is presented in the following proposition:

Proposition 2 Under assumptions (1-3), the threshold that maximizes welfare is given

by:

δ∗ = 1 +
1

kn(1− γ)
ln

(
1− 2αnγδ∗

c

1 + (1 + δ∗)kn(1− γ)

)
Proof 2 Total welfare is given by

w(δ) = p(δ)(hKE(λKE) + hDDL(λDDL))

= wKE + wDDL

dw

dδ
=

dwKE

dδ
+

dwDDL

dδ
(17)

We simply substitute (11) and (15) into (17) to find the FOC:

dw

dδ
=

1

2
c
((
1− e−kn(1−γ)(1−δ)

)
− (1− δ)kn(1− γ)e−kn(1−γ)(1−δ)

)
− αnγδ = 0

This can be rearranged to yield Proposition 2.

3 Welfare Effects

Adjusting the required certainty that a transplant will benefit the patient may have a

significant impact on the number of beneficial kidney transplantations performed. We
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estimate the effects here. First, we empirically derive estimates for the model parameters.

Variables n and c are directly reported. The cutoff, δ, is derived by the portion of ESKD

patients who are waitlisted, assuming the uniformity of g(ξ). Variables k, γ, and α are

not directly reported, or are model simplifications. Estimating the variables involved

two steps. First, an initial empirical estimate was made. Second, the model was fit to

historical rates of transplantation. Estimates are listed in Table 3.15

Parameter Value Description
n 362.2 ESKD diagnosis, daily
c 59.4 Deceased donor kidneys harvested, daily
k 0.016 Deceased kidney utilization parameter
γ 0.156 Portion of patients entering the live donor market
α 0.955 Survival rate for patients enrolled in KE
δ 0.691 Waitlist eligibility cutoff

Table 1: Empirically derived model parameter estimates

Plugging these parameters into the model yields an estimated daily transplantation

rate h = 63.5 (actual: 63.7), composed of a DDL rate hDDL = 46.9 (actual: 47.0) and

a KE rate hKE = 16.6 (actual: 16.6). The cutoff δ = 0.691 corresponds to an expected

precision of 84%. This aligns with the actual 3-year survival rate of 84% (Ghelichi-

Ghojogh et al. 2022) but ignores the complexities of our ’beneficial transplant’ definition.

Lowering the certainty threshold to its optimal value would lead to an additional 3,100

beneficial transplantations per year. The current threshold value is set to δ = 0.69, while

the numerically solved optimal value is δ∗ = 0.37. This improves the total beneficial

transplants from 54.0 to 63.2. This improvement is primarily driven by an elevated

rate of KE transplants. The difference between the optimal and actual KE threshold is

significant, as expected by Proposition 1. The optimal thresholds for the KE and DDL

markets are given by δ∗KE = 0 and δ∗DDL = 0.57 respectively. See Figure 1 for a plot of

w(δ). Also see Appendix B for a full table of results, detailing matching rates for each

market at optimal and status quo thresholds.

15See Appendix C for sources and further discussion.
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Figure 1: Welfare, w(δ) for uniform distribution.

4 Extensions

4.1 Vary the distribution of g(ξ)

The assumption that g(ξ) is uniform is unrealistic. The true distributions is likely closer

to bimodal, with most patients either clearly eligible or clearly ineligible. As a proof of

concept, define a new distribution, gbimodal, given by:

gbimodal(ξ) =


0.4ϕ1(ξ)+0.6ϕ2(ξ)∫ 1

0 (0.4ϕ1(ξ)+0.6ϕ2(ξ)) dξ
, 0 ≤ ξ ≤ 1,

0, otherwise.

where the individual normal distributions are given by ϕ1 ∼ N (0, 0.2) and ϕ2 ∼ N (0.9, 0.2).

The PDF and CDF of this function is presented Figure 2.

We solve non-uniform distributions of g(ξ) computationally. We can find δ∗ = 0.42

computationally. As in the uniform distribution case, δ∗ < δ, as δ = 0.84 under this dis-

tribution. Given that Proposition 1 does not depend on the form of g(ξ), we would expect

this result to hold under a variety of g(ξ) forms.16 In every tested bimodal distribution,

δ > δ∗ remained true. See Appendix B for additional graphs and values.

16As a reminder, we calculate δ such that
∫ δ

0
g(ξ)dξ = 0.691, corresponding to the fact that 30.9% of
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Figure 2: An example bimodal distribution of g(ξ).
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Figure 3: Welfare, w(δ) for bimodal distribution.

total ESKD patients are waitlisted.
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4.2 Include the cost of non-beneficial transplantations

Currently, the welfare function only maximizes beneficial matches. This could easily be

adapted to include a penalty for non-beneficial matches. While the opportunity cost of

non-beneficial matches is already captured, this weight would reflect the cost of trans-

plantation itself. To pursue this extension, let us define a new welfare function

wnet(ξ) = p(δ)(hKE(λKE) + hDDL(λDDL))− µ(1− p(δ))(hKE(λKE) + hDDL(λDDL))

= ((1 + µ)p(δ)− µ)(hKE(λKE) + hDDL(λDDL))

Where µ ∈ R+ is a weight for non-beneficial matches. We can present an updated

Proposition 1 accounting for µ:

Proposition 3 For any well-behaved, positive valued probability distribution, g(ξ), my-

opic matching algorithm, and µ ≥ 0 weight on non-beneficial matches, wnet
KE(δ) is maxi-

mized by

δ∗KE =
µ

1 + µ

once the system reaches steady state.

Proof 3 Building off the problem description presented in Proposition 1, we can define

the KE model welfare function as:

wnet
KE(δ) = α ·

(
(1 + µ)

∫ 1

δ
g(ξ)ξdξ∫ 1

δ
g(ξ)dξ

− µ

)
· nγ

∫ 1

δ

g(ξ)dξ

= αnγ ·
(
(1 + µ) ·

∫ 1

δ

g(ξ)ξdξ − µ

∫ 1

δ

g(ξ)dξ

)
And the FOC is given by

dwnet
KE

dδ
= αnγ · g(δ∗) · (µ− δ∗(1 + µ)) = 0

µ = δ∗(1 + µ)

δ∗ =
µ

1 + µ

As expected by Proposition 1, δ → 0 as µ → 0. Intuitively, the larger the weight on

non-beneficial matches, the higher the optimal certainty threshold. It is also interesting

to note that this result does not depend on distribution g(ξ) or KE market efficiency α.
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We apply computational methods to find optimal certainty thresholds and net welfare

under both uniform and bimodal distributions. We assume µ = 1 for the sake of simplic-

ity, although this could easily be adjusted based on empirical costs. Refer to Appendix

B for specific values.
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Figure 4: Net welfare, wnet(δ) for uniform distribution and µ = 1.
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4.3 Allow δ to vary by market

Let the DDL and KE could have independent thresholds. We expect welfare to improve

and δ∗DDL > δ∗ > δ∗KE = 0. In the base model (uniform distribution and µ = 0),

allowing the threshold to vary between markets results in an expected 68.2 beneficial

transplantations, a 9.6% increase from the optimal single-threshold rate of 62.2.

4.4 Introduce patient agency

If a patient’s doctor does not think a patient would benefit from receiving a transplant,

i.e. ξi < 0.5, the patient will likely not join the waitlist even if they are permitted to. The

likelihood a patient joins could be modeled as a function of their perceived likelihood of

benefiting, ξi. This effect is likely stronger within the KE market, where a patient must

privately find a donor to enter. While the optimal threshold for permission would remain

at 0, we would expect many patients would choose not to join. This extension would

depress the welfare effect expected by lowering the threshold, but would not eliminate it.

Additionally, we expect the optimal threshold for the DDL to decrease.

5 Conclusion

In this paper, we consider a bifurcated market and agents that may or may not benefit

from exchange. We adopt the position of a social planner who seeks to maximize the

number of beneficial exchanges. When agents must provider their own good to partic-

ipate, we find that there should be no minimum certainty requirement for joining the

market. When goods are distributed from a limited supply, we find that the threshold

should be set such that the marginal benefit from increased precision is equivalent to the

marginal detriment from reduced market size.

When applied to the USA kidney transplantation market, we find that the optimal

certainty threshold is significantly below the status quo certainty threshold. This finding

remained robust on a variety of extensions. In direct contrast to current practice, we

found that KE programs would benefit from removing restrictions on which patients can

join.17 We can now answer the two motivating real-world scenarios from the introduction.

First, we expect that financial incentives aimed at increasing waitlist enrollment would

17Note that this paper relates to changing restrictions on patients, not donors.
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improve welfare. Second, the example couple should be permitted to join a KE program,

regardless of the husband’s eligibility for the DDL.

The magnitude of impact and exact optimal level would require additional empirical

study to calculate. It is clear, however, that a downward revision of the certainty threshold

would improve the number of beneficial transplantations per year.
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A Glossary

Term Description

n Poisson arrival rate to ESKD pool

xi Unobservable true type, captures whether agent i benefits from exchange

ξi Observed likelihood an agent benefits from exchange, ξi = Pr[xi = 1]

g(ξ) Population Probability distribution function of ξi

δ Certainty threshold. ξi ≥ δ is required to enter the market

KE Kidney Exchange market. Abstracted to include all live donors

DDL Deceased Donor List market

γ Probability any agent enters the KE

(1− γ) Probability any agent enters the DDL

λKE Poisson entry rate into the KE market

λDDL Poisson entry rate into the DDL market

hKE KE market processing function, the number of agents matched

hDDL DDL market processing function, the number of agents matched

p(δ) Precision, the expected value of matching a permitted agent

w(δ) Welfare, the rate of matched patients

c Harvest deceased donor kidneys per period

k Deceased donor kidney utilization parameter

α Portion of patients who enter KE that are ultimately matched

µ Weight value for non-beneficial matches

Table 2: Glossary of terms and symbols.
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B Results and Figures

Distribution Uniform Bimodal

Welfare function Base, µ = 0 Net, µ = 1 Base, µ = 0 Net, µ = 1

δE 0.69 0.69 0.84 0.84

δ∗ 0.35 0.64 0.42 0.68

δ∗DDL 0.56 0.70 0.68 0.77

δ∗KE 0.00 0.50 0.00 0.50

w(δE) 53.98 44.07 60.33 53.21

wDDL(δ
E) 39.17 31.99 42.47 38.63

wKE(δ
E) 14.80 12.09 16.03 14.58

w(δ∗) 63.22 44.50 76.29 60.40

wDDL(δ
∗) 40.95 31.55 47.03 38.84

wKE(δ
∗) 28.25 12.95 33.36 21.56

Welfare increase 9.24 0.43 17.79 7.19

Improvement (%) 17% 1% 30% 14%

Total transplants, hE 63.88 63.88 63.79 63.79

Non-beneficial 9.90 9.90 5.29 5.29

(% beneficial) 85% 85% 92% 92%

Total transplants, h∗ 93.38 69.10 95.61 95.88

Non-beneficial 30.16 12.30 19.32 12.74

(% beneficial) 68% 82% 80% 85%

Table 3: Optimal thresholds, transplants, and welfare with extensions.

Table 3 presents the optimal certainty thresholds, total transplants, and welfare im-

provements. Note that E signifies empirically estimated status quo. The following figures

graph w(δ), wnet(δ), and h(δ) against uniform and bimodal distributions of g(ξ).
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Figure 6: Total transplants, h(δ), for uniform distribution.
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Figure 7: Total transplants, h(δ), for bimodal distribution.

C Empirical Parameter Discussion

To be completed later as this does not effect the grade. Many parameters were directly

found from transplantation data, while others that are not directly reported were derived



Optimal Certainty in Kidney Exchange 23

from estimates.
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